The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 X^2 0 1 0 X 0 X^2+X+2 2 X^2+X 2 X+2 0 X^2+X 2 X+2 2 X^2+X+2 0 X 0 X^2+X+2 2 X+2 0 X^2+X+2 2 X 2 X^2+X+2 0 X^2+X+2 2 X+2 2 X+2 X^2+2 X+2 X^2 X^2+X+2 X^2 X^2+X X^2 X X^2+2 X X^2 X^2+X X^2 X X^2 X^2+X+2 X^2+2 X+2 X X^2+X X^2 X^2 X^2 X^2+X+2 X^2 X+2 X^2+2 X^2+2 X^2+X+2 X^2+X X+2 X^2+2 2 X X X 0 0 0 X+2 X+2 0 0 0 X+2 X+2 X^2+2 X^2+2 X^2+X X^2+X X^2+X X^2 2 X+2 X^2+X+2 X^2+2 2 X^2+X+2 X^2 X X^2 0 X^2 0 0 X^2+2 0 0 X^2+2 X^2 X^2 0 0 0 0 X^2 X^2+2 X^2+2 X^2 2 2 2 2 X^2+2 X^2 X^2 X^2+2 2 2 2 X^2 X^2+2 X^2+2 X^2 2 X^2 X^2 X^2+2 X^2+2 0 2 2 0 X^2 X^2 X^2+2 X^2+2 2 2 0 0 X^2+2 X^2+2 0 0 X^2 2 0 X^2 X^2+2 X^2+2 X^2 0 X^2 2 2 2 X^2+2 X^2 2 2 2 0 X^2 0 0 2 X^2+2 X^2 X^2 X^2 0 X^2+2 X^2 X^2+2 X^2 X^2 0 X^2+2 2 0 X^2+2 0 X^2+2 X^2+2 X^2+2 0 X^2 0 0 0 X^2+2 X^2 X^2+2 X^2 0 2 X^2 X^2+2 2 X^2+2 X^2 2 2 2 X^2+2 X^2+2 0 X^2+2 X^2+2 2 0 0 X^2 X^2 X^2 X^2 2 0 2 X^2 X^2 2 0 X^2+2 2 2 X^2 X^2+2 X^2+2 0 2 X^2+2 X^2 0 0 X^2+2 X^2+2 X^2+2 2 0 X^2 2 2 X^2 X^2 2 X^2 0 0 X^2+2 0 2 0 2 0 X^2+2 X^2+2 2 X^2+2 X^2 0 X^2 X^2 X^2+2 2 0 0 X^2+2 0 X^2 2 2 0 0 X^2+2 X^2+2 2 X^2 X^2 0 X^2 0 generates a code of length 95 over Z4[X]/(X^3+2,2X) who´s minimum homogenous weight is 91. Homogenous weight enumerator: w(x)=1x^0+136x^91+113x^92+288x^93+144x^94+716x^95+186x^96+296x^97+16x^98+40x^99+51x^100+56x^101+4x^103+1x^184 The gray image is a code over GF(2) with n=760, k=11 and d=364. This code was found by Heurico 1.16 in 5.75 seconds.